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Abstract 

  

 This paper examines different machine learning models to project the U.S. mortgage 

delinquency rate one-, two-, and four-quarters ahead. One is a Lasso model that directly scrapes 

data from FRED and the other two use principal components from these series in a Lasso and 

artificial neural network (ANN) model. These models can be quickly run using an SQL database 

to select data from the Federal Reserve Economic Database (FRED) and be fitted (“trained”) in-

sample from 1970 to 2000 to forecast quarterly mortgage delinquency rates over 2000 to 2018. 

The training window is updated in each forecast quarter to include new data.  A rolling-window 

and non-rolling window period are tested for the training window. This paper finds that a non-

rolling neural network model forecasts better than either Lasso regression model. From 

experiments dropping broad categories of FRED variables in four-quarter ahead forecasts for the 

long forecast period, “Money, Banking, and Finance” data were the most important in forecasting 

this delinquency rate. Over each sub-forecast period, the ANN model outperformed, but to the 

largest degree over the Great Recession sub-sample 2007-12.  This pattern accords with the view 

that highly nonlinear dynamics can dominate in recessions and the much better ability of ANN 

models to track nonlinear relationships than the linear, albeit parsimonious Lasso regression 

approach. The ANN approach outperforms more at longer forecast horizons, which can provide 

policymakers and regulators more advanced warning to prepare for higher real estate loan losses. 
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1. Introduction 

 Large losses on mortgages played a key role in undermining financial stability and 

contributing to the Great Recession.  To a large extent such losses were not foreseen, prompting 

economists to revamp their econometric models and policymakers to reform financial regulation 

to reduce the risk and severity of future credit cycles.  This paper assesses whether machine 

learning techniques could help forecast overall mortgage quality.  We do so by assessing two basic 

machine-learning techniques for deriving information from large datasets to avoid the curse of 

dimensionality.  One technique, the Lasso Regression approach, uses linear methods to drop 

variables with low information and obtain parsimonious, but yet informative forecasting models. 

A major disadvantage of linear models in general is that they often do not track the severity of 

economic downturns or tail risk events, such as mortgage delinquency or foreclosure. Another 

technique is to build an artificial neural network (ANN) machine learning model, which by 

mimicking many of the processes of the human brain in a network, can track nonlinear 

relationships and thus, in principle, better track the severity of recessions (e.g., the unemployment 

rate) or of loan losses (e.g., the mortgage delinquency rate).1     

Unlike other published studies that have applied machine learning to mortgage 

delinquencies we focus on predicting the aggregate rate of mortgage delinquency and not which 

particular loans in a portfolio are likely to become delinquent by from cross-section characteristics.  

Doing so keeps the focus on financial stability and detecting major swings in overall loan quality.   

This paper implements a four-quarter ahead forecast for the seasonally adjusted, share of 

mortgages that are 30 to 90 days delinquent.  For two major reasons, we pick this rate rather than 

rate at which mortgages enter the process of foreclosure or the rate at which mortgages are 

                                                 
1 Indeed, Kreiner and Duca (forthcoming) find that an ANN notably outperforms a Lasso Regression (and also the 

Survey of Professional Forecasters) in forecasting the unemployment rate. 



 2 

delinquent for 90 or more days. First, there were a number of legal and regulatory actions taken 

during the housing crisis that either prevented lenders from foreclosing on late mortgages or 

affected borrower decisions to prolong delinquency or shorten it with short-sales of homes.2  As a 

result, shifts in regulation and legal actions are difficult to track in time series models.  Second, 

mortgages that have been late for a long period of time reflect the impact of past changes more 

than mortgages that have only recently become delinquent.  This makes it more difficult to link 

the time series behavior of very late mortgages to previous events than for more recent mortgages.   

Starting from an in-sample training period of 1970-2000, we start forecasting the 30-90 day 

mortgage delinquency rate four-quarters ahead for 2000:q4 and then progressively add one quarter 

more data to project the next quarter over 2001:q4-2018:q4.  We examine two types of forecasting 

models—a Lasso regression and a neural network model, each of which can be quickly run using 

an SQL database. 

The latter two models use machine learning techniques to select data from a large number 

(over 600,000) of macroeconomic variables in the Federal Reserve Economic Database (FRED), 

ranging from measures of aggregate economic activity such as the money supply, to city-level data. 

We find that a non-rolling neural network model forecasts bests and outperforms a Lasso 

regression model across all sample periods. From experiments dropping broad categories of FRED 

from the ANN model, “Money, Banking, and Finance” data were the most important in forecasting 

this delinquency rate one-year ahead over the 2000-2018 forecast period. Because the ANN model 

uses principal components to reduce the number of input variables, it is difficult to pinpoint which 

individual variables add the most information.  One advantage of a Lasso Regression is that we 

can apply it to either principal components or the underlying variables, and in the latter case, one 

                                                 
2 Short sales involve homes being sold for less than the mortgage balance outstanding and lenders being willing to 

receive less than full repayment of principal from such sales. 
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can determine which particular variables add the most information. The top five variables were 

credit, financial or labor market indicators. 

 To establish these findings, the paper is organized as follows. Section 2 reviews relevant 

literature on machine learning for forecasting mortgage delinquency rates and using marginal 

information that forecasters may ignore. Section 3 details the data selection methodology that is 

applied to the FRED Database. Section 4 begins by providing a theoretical overview of the 

machine learning techniques used—including principal components analysis, Lasso regression, 

and neural networks—before outlining the forecasting algorithms for each statistical model. The 

results are presented in Section 5, with perspective and broader lessons discussed in the conclusion.  

 

2. Literature Review  

New machine learning models could have widespread use and have a large impact on 

economics. According to Mullainathan and Spiess (2017), most econometric models focus on the 

best estimates for coefficients on regressors (the β’s in the in-sample data, whereas machine 

learning focuses on explaining the independent variable �̂� on out-of-sample data). In other words, 

econometricians focus on the weight of factors in-sample, whereas machine learning focuses on 

the out-of- sample performance in predicting the dependent variable. For these reasons, machine 

learning is best suited for economic analysis that requires high out of sample performance, such as 

forecasting.  Some examples of machine learning in economics include measuring economic 

activity using satellite images, classifying industries based on their 10-K filings, and building 

forecasts for core economic indicators (Mullainathan and Spiess, 2017).   

With respect to macro-time series applications, there are several models that apply 

machine-learning techniques to forecast real GDP growth, and among the published ones are 

Prasad and Sinha (2018) and Jung et. al. (2018).  Many of these were inspired by Giannone, 
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Reichlin, and Small’s (2008), whose pioneering work on now-casting emphasized the advantages 

posed by deriving information from a myriad of variables of mixed frequency and release dates. 

A handful of published studies have also applied machine-learning to forecast the civilian 

unemployment rate, including is Cook and Hall (2017), who use neural networks based on a single 

macroeconomic indicator (monthly lags of the civilian unemployment rate), and Kreiner and Duca 

(forthcoming), who use machine-learning techniques to pull data from the large FRED database.  

Both models produce better forecasts of near-term unemployment than the Survey of Professional 

Forecasters (SPF), with the latter able to outperform the SPF at somewhat longer (two- and four-

quarter ahead) horizons, likely reflecting the advantage of drawing upon a large set of publically 

available data.       

A few studies apply machine-learning techniques to predict the loan quality of individual 

mortgages in particular portfolios. For example, Kvamme, et al. (2018) are able to forecast 

Norwegian mortgage defaults on individual loans using machine-learning techniques on household 

data on checking, savings, and credit account history.  And in an unpublished, but posted paper, 

Ponomareva, Epstein, and Knight (2019) use past mortgage payment behavior plus information on 

eight characteristics of loans at origination to predict whether future loan payments will be on time, 

or late according to three categories. Both of these studies apply machine learning to a limited set 

of data to forecast future loan status.   

Perhaps the most impressive of posted or published machine learning models of mortgage 

quality is a study by Sirignano, Sahwani, and Giesecke (2016). This paper estimates and forecasts 

the payment behavior of over 120 million U.S. mortgages originated between 1995 and 2014 on 

detailed loan specific and local area conditions.  The authors find that the ability of their ANN 

enables them to better track the nonlinear behavior of mortgage loan quality than prior models of 
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loan-level delinquency, and their results accord with the double-trigger approach to mortgage 

defaults that attributes defaults to shocks to borrower income and to instances of low or negative 

net equity positions of homeowners.   

While these papers make important contributions regarding the prediction of individual 

loan quality—a very worthwhile topic in and of itself—there remains the question of whether 

machine learning can help analysts gauge overall trends in mortgage quality. This issue is very 

relevant for tracking macroeconomic cycles and financial stability.  Indeed, several central banking 

and financial supervisory institutions use heat maps and network analysis to track the myriad of 

risks to financial stability (inter alia, see, Aikman et al., 2017, and Gai, Haldane, and Kapadia, 

2011).  Our study tries to supplement these efforts with using machine learning to provide an 

overall forecast of the early-stage overall mortgage delinquency rate by drawing upon a broad set 

of publicly available information and using relatively long in-sample and out-of-sample periods.  

Long sample periods are especially desirable because there are only a few major delinquency rate 

cycles given the long cycles in housing and mortgage behavior.  Partly because delinquency rates 

were not available for sub-classes of mortgages over long samples and partly to focus on the overall 

tone of loan quality, we model the delinquency rate on all types of mortgages. 

Our paper shows that machine learning provides superior out-of-sample forecasts of the 

mortgage delinquency rate relative to forecasts from linear Lasso regression models. While this 

method cannot produce a set of 𝛽 ’s, this is compensated by adding and dropping key data 

categories and testing out of sample performance before and after omitting sets of data. The use of 

this methodology indicates which types of variables have the largest benefit to improving forecasts. 

If omitting a set of variables causes the out of sample error to increase the most, then the machine 

learning algorithm puts the highest weight on these variables.  



 6 

3. Data  

 We draw data from the Federal Reserve Economic Data (FRED) database, which contains 

about 600,000 variables that are binned into categories labelled with a category number. Categories 

and data can lie within other categories. In this way, FRED is structured as a recursive tree database 

with categories and data stored in trees. For example, category 0 contains 8 of the prime categories 

in FRED: Money, Banking, and Finance; Population, Employment, and Labor Markets; National 

Accounts; Production and Business Activity; Prices; International Data; US Regional Data; and 

Academic Data. Table 1 summarizes which types of data are in each of these prime categories. 

These categories will be used to assess which types of variables significantly affect the overall 

mortgage delinquency rate.  The algorithm for scraping the data identifies all the categories by 

making recursive calls to the FRED tree structure. Next, all of the variables are collected from 

each category.  Data are the actual time series for a particular variable. Only data series that meet 

the following criteria are retained in the final model:  

1. Frequency: The variable must be monthly or quarterly. If a variable has a frequency higher 

than monthly, the series is converted to a monthly series using FRED's conversion 

algorithm. This criterion accommodates the vector construction of inputs and outputs. The 

forecasting algorithm section will discuss this further.  

2. Consistency: The variable must have consistent data from January 1970 to September 2018. 

The data series cannot have any missing values.  This criterion ensures the forecast uses 

variables that are continuously available. 

3. Revision History: The variable’s data are from the first revision if available. Otherwise, use 

the revision that was first released. This minimizes the use of information available in the 

future. This represents the first figure published for the first revision available.  
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Category Types of Variables Included 

Money, Banking, and Finance Interest Rates, Exchange Rates, Monetary 

Data, US Financial Indicators, Banking, 

Business Lending, Foreign Exchange 

Intervention 

Population, Employment, and Labor Markets Current Population Survey (Household 

Survey) , Current Employment Statistics 

(Establishment Survey) , ADP Employment, 

Education, Income Distribution, Job 

Openings and Labor Turnover (JOLTS), 

Labor Market Conditions, Population, 

Productivity and Costs, Minimum Wage, 

Weekly Initial Claims, Tax Data 

National Accounts National Income and Product Accounts, 

Federal Government Debt, Flow of Funds, 

US Trade and International Transactions 

Production and Business Activity Business Cycle Expansions & Contractions, 

Construction, Finance Companies, Health 

Insurance, Housing, Industrial Production 

and Capacity Utilization, Manufacturing, 

Retail Trade, Services, Technology, 

Transportation, Wholesale Trade 

Prices Commodities, Consumer Prices Indexes 

(CPI and PCE), Cryptocurrencies, 

Employment Cost Index, Health Care 

Indexes, House Price Indexes, Producer 

Price Indexes, Trade Indexes 

International Data Countries, Geography, Indicators, 

Institutions 

US Regional Data States, Census Regions, BEA Regions, BLS 

Regions, Federal Reserve Districts, Freddie 

Mac Regions 

Academic Data Banking and Monetary Statistics 1914-1941, 

Data on the nominal term structure model 

from Kim and Wright, Historic Federal 

Reserve Data, NBER Macrohistory 

Database, Penn World Table 7.1, Penn 

World Table 9.0, Recession Probabilities, 

Weekly US and State Bond Prices, 1855-

1865, Economic Policy Uncertainty, Sticky 

Wages and Comovement, A Millennium of 

Macroeconomic Data for the UK. 

Table 1: Summary of the Types of Variables in FRED. 
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4. Forecasts: All variables that are from a forecast are omitted to preclude the use of future 

information and ensures that the model does not gain performance from an outside forecast.  

5. Discontinued Series: If a series is discontinued, then it is omitted. This criterion ensures 

the forecast uses variables that are currently available. 

6. Lagged/Leading Variables: If a variable is lagged or from the future, it is omitted to avoid 

using future information and adding noise from time series reported at the wrong date. 

 

The dependent variable is the seasonally adjusted total mortgage delinquency rate for loans 

30 to 90 days delinquent. Other filtered variables are the independent variables, including lags of 

the delinquency rate. The current and four lags of delinquency are used to forecast delinquency 

four quarters later. After applying the above criteria, most variables are dropped. Table 2 

summarizes how many variables in each prime category were considered and selected.  On average, 

fewer than 2% of the variables in each category met the filtering criteria. In particular, none of the  

 

Category Number of Variables 

Before Filter 

Number of Variables 

After Filter 

Survival 

Rate 

Money, Banking, & Finance 9,424 235 2.49% 

Population, Employment, & 

Labor Markets 

25,313 906 3.58% 

National Accounts 17,435 2,919 16.74% 

Production & Business 

Activity 

11,119 844 7.59% 

Prices 14,158 769 5.43% 

International Data 158,700 4,356 2.74% 

US Regional Data 337,176 617 0.18% 

Academic Data 15,642 0 0.00% 

Total 588,967 10,646 1.81% 

 

Table 2: Number of Variables in Each Category and Selected for the final model. 

(Sources: FRED and authors’ calculations.  “Survival Rate” measures the percent of variables 

per category that were selected for the final model. 
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academic variables were selected while 17% of the national accounts variables were selected (the 

highest in percentage terms). In absolute terms, international variables had the highest number of 

variables in the final model.  

4. Theoretical Models 

 This section summarizes and details the mathematics and algorithms behind the statistical 

models used in the forecasting algorithm section. In particular, principal components analysis is 

discussed first as a black box that reduces the dimensionality of the variables used for the forecast. 

Next, neural networks are presented as a highly non-linear black box for forecasting, which relies 

on computational techniques that mimic those used in the human brain for processing information. 

Finally, a Lasso regression is presented for forecasting that relies on variable selection (or omitting 

irrelevant variables) and a dynamically sized error term.  

4.1 Principal Components Analysis 

Principal components analysis (PCA) is a dimensionality reduction algorithm that inputs a 

dataset and outputs another with fewer variables and linearly independent data columns. Principal 

components analysis is used to reduce multicollinearity and redundancy in the variables of the 

forecasting model. Failure to do so causes overfitting and contributes noise to forecasts from the 

final model. Subsections 4.2 and 4.3 provide more details on the black boxes used in forecasting. 

In implementing PCA, the convexity of the problem solved by the PCA algorithm ensures that the 

computer can solve the problem efficiently (see Crawford, 2015). 

4.2 Lasso Regression 

 A Lasso regression can use the data to create unemployment forecasts. A Lasso or “least 

absolute shrinkage and selection operator” is a type of regression that uses both variable selection 

and regularization to maximize prediction accuracy and coefficient interpretation. Regularization 
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refers to techniques that reduce noise in the training data. A Lasso regression can assign variables 

a weight of 0 (even if they carry variance) and thus has a dimensionality reduction element 

embedded within it. This aids in the interpretation of estimated coefficients by reducing the number 

that need to be interpreted. A Lasso regression also has regularization as a feature. This allows the 

weights of the regression to not be too high or too low arising from noise or over-fitting.  

 The mathematics behind the Lasso Regression are similar to those of a linear regression. 

Suppose we have independent variable data X with k factors and dependent variable Y. X and Y 

are expressed in matrix notation. The Lasso minimizes the sum of squared errors with an upper 

bound on the sum of the absolute values of the model parameters (or regularization of the 

parameters). Let β be the matrix of coefficients for this regression. The Lasso, therefore, solves 

the following optimization problem:  

𝑚𝑖𝑛 
||𝑌 − 𝑋β||2

2

𝑛
                                                                                                              (1) 

subject to: ∑ ||β||1

𝑘

𝑗=1

< t                                                                                                (2) 

 We note eq. (1) is equivalent to ordinary least squares. ||𝑌 − 𝑋β||2
2 = ∑ (𝑌𝑖 − β𝑋𝑖)

2𝑛
𝑖=0  or 

the sum of squared residuals and ||β||1 = ∑ |β𝑗|𝑘
𝑗=1 . t is the upper bound for the absolute sum of 

the coefficients. The smaller the value of t, the smaller the absolute size of the coefficients will be 

in the final regression. t therefore controls for overfitting and noise by ensuring that any one 

coefficient is not too large. Equations (1) and (2) can be rewritten in terms of a new parameter: λ. 

Shrinkage refers to the degree the magnitude of the coefficients can be reduced as compared to 

OLS. When λ=0 it corresponds to no shrinkage and t equals infinity; this is OLS. λ must be non-

negative because shrinkage refers to the absolute magnitude of the coefficients, which must be 

positive. Using this theory, the optimization problem can be re-written as follows:  
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β̂(λ) = argmin
β

(
||𝑌 − 𝑋𝛽||

2

2

𝑛
+ 𝜆||β||1 )                                                                   (3) 

Equation (3) represents the optimization problem for  β̂ as a function of the shrinkage 

parameter 𝜆 and the matrix of unknown β’s. Equations (1) and (2) describe the same optimization 

problem as equation (3), but 𝜆 is more widely used in the literature and econometric packages as 

compared to t. As is the case with principal components and OLS, the Lasso regression has a 

convex optimization function and thus estimates for β̂ are relatively easy to find.  In the optimal 

solution, a β̂𝑗 can be zero meaning the weight is also zero. The shrinkage parameter allows series 

with non-zero variance to have the potential to have the weight be zero. 

 Even though the Lasso regression has some embedded functionality to deal with over-

fitting and noise, reducing these two characteristics is ideal before the Lasso regression is run. In 

the context of the Lasso regression, the idea of zero weight on some factors helps reduce overfitting. 

However, to guarantee overfitting does not occur, it is best to have more rows of data than factors. 

For this reason, it is recommended that a dimensionality reduction algorithm like PCA be used 

before using a Lasso regression (see Fonti 2017). This is discussed further in Section 5. A Lasso 

regression’s objective function is convex and runs quickly, making it appealing to analyze big data.  

4.3 Artificial Neural Networks (ANN’s) 

 An artificial neural network (or ANN) is a statistical computational system modeled after 

biological neural networks in the brain. The ANN “learns” by being given examples that pair inputs 

to outputs. These pairs are called the “training data” or the “fit data”. In contrast to OLS or a Lasso 

regression, the form of the model is not specified beforehand. While an optimization procedure is 

used, the actual model is dynamic and changes depending on the input. In this way, ANN’s are 

highly nonlinear and can differ drastically depending on the nature of the data. While it is more 
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difficult to interpret the weights in these models, they potentially offer a higher degree of accuracy 

in forecasting, which is ideal since the goal is to find the model with the lowest root mean squared 

error for forecasting out-of-sample or “testing” data. In-sample fit and the interpretation of weights 

on the fit data are secondary to the model’s ability to forecast the test data.  

 Because an ANN is constructed based on brain neural activity, it is helpful to start by 

considering a rudimentary model of the brain. For a simple example and applying some key terms 

associated with ANN’s, consider the ubiquitous depiction of thinking in Figure 1. Suppose Figure 

1 models the brain’s decision of whether to walk left or right. The brain has five inputs, denote 

them a, b, c, d, and e. Each could represent a binary variable, such as whether a wall is immediately 

to our left or right. There is only one output, which is the trinary variable: 0 if going right, 1 if 

going left, and 2 if doing nothing. Each circle depicts a neuron, a computational unit that takes in 

a series of inputs and produces an output. Consider the bottom-most circle closest to “inputs.” This 

neuron has five inputs and it outputs its computed value to four neurons in the middle column. The 

neurons in the middle column takes those outputs as inputs, and then computes their output, which  

 

Figure 1: A Schematic of Human Brain Analytical Processes 
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it provides to the final neuron. This final neuron then makes the final computation and produces 

the final output.  

There are several key terms from this example. The three circles closest to “inputs”, the 

next four circles, and then the circle closest to output form “hidden layers.” These are the 

computational units that transform inputs to outputs. The rule that converts a neuron’s input to an 

output is considered to be an activation function. Because a neuron is a simple processing unit, the 

activation function cannot be overly complex. The non-linearity of the network derives from the 

repeated iteration, clustering, and connection of neurons. Each ray in the diagram connects a 

neuron to another neuron. Consider an arbitrary connection of neuron a to neuron b, where neuron 

a is an input to neuron b. The output of neuron a has an attached weight in the propagation function 

of neuron b. This is true for every connection of neurons in the diagram. One can therefore 

associate a set of weights with the above network.  

Each neuron also has an associated bias that measures the intercept of the propagation 

function. The weights determine the slope of the parameters of the activation function while the 

bias determines the intercept. This is needed to provide optimal output at each layer of the network.   

 To provide more details on the calculation embedded in an arbitrary neuron in a neural 

network, consider an arbitrary neuron: j. Neuron j receives the outputs 𝑜𝑖1
, 𝑜𝑖2

… , 𝑜𝑖𝑛
 from neurons 

𝑖1,  𝑖2, … , 𝑖𝑛 (which are connected to neuron j). The propagation function of neuron j is defined as 

the transformation of each of the outputs with respect to the weights into one network input. This 

is the weighted sum of the outputs from neurons 𝑖1,  𝑖2, … , 𝑖𝑛 and the weights 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗.   

𝑤𝑖1,𝑗 represents the weight from neuron 𝑖1to neuron 𝑗. Let 𝐼 = {𝑖1,  𝑖2, … , 𝑖𝑛}. Let the output of the 

propagation function be 𝑛𝑒𝑡𝑗. 𝑛𝑒𝑡𝑗  is therefore: 

𝑛𝑒𝑡𝑗 = 𝑏𝑖𝑎𝑠𝑗 + ∑ 𝑜𝑖 ∗ 𝑤𝑖,𝑗

𝑖∈𝐼

                                                                                                (4) 
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In equation (4), 𝑛𝑒𝑡𝑗  is a number with singular dimension and 𝑏𝑖𝑎𝑠𝑗 is the calculated intercept. 

The propagation function thus reduces the dimensionality of the inputs of neuron j from n to 1. 

Next, the activation function transforms 𝑛𝑒𝑡𝑗 into a probability between 0 and 1. This paper uses 

Python for the implementation of ANN’s.  

There are four types of activation functions used in Python’s artificial neural networks 

library: Identity, Logistic, Tanh, and Relu. These functions take the output from the propagation 

function and transform it into the output of the overall neuron. These functions determine if a 

neuron fires. In other words, a neuron firing determines if the neuron is important in fitting the in-

sample data. The functions are described below: 

1. Identity: f(𝑛𝑒𝑡𝑗)= 𝑛𝑒𝑡𝑗. 𝑛𝑒𝑡𝑗 is rounded to 1 if 𝑛𝑒𝑡𝑗 > 1 or rounded to 0 if 𝑛𝑒𝑡𝑗 < 0. This 

is the simplest of activations.  

2. Logistic: f(𝑛𝑒𝑡𝑗)= 
1

1+𝑒
−𝑛𝑒𝑡𝑗

. This is the most commonly used activation as it has the best 

success on most datasets as compared to the other three activation functions. The function 

is a sigmoid with asymptotes at 0 and 1.  

3. Tanh: f(𝑛𝑒𝑡𝑗)=tanh (𝑛𝑒𝑡𝑗). Once again, this activation has asymptotes at 0 and 1. The 

curvature of tanh is less steep than the sigmoid, meaning each activation probability is  

lower than the sigmoid.  

4. Relu: A rectified unit linear function is f(𝑛𝑒𝑡𝑗)=max (0, 𝑛𝑒𝑡𝑗). If this quantity exceeds 1, 

then the output is rounded down to 1.  

From these, tests select which activation function provides the greatest performance on the 

out of sample data as gauged by the RMSE. Each of these activations returns a probabilistic value 

from 0 to 1. We say this neuron fires if the probability is greater than the predetermined threshold 

value. It can be shown that the threshold value in a given neuron is the maximum gradient of the 
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activation function. A firing neuron represents that the inputs to neuron j have weight on the inputs 

of the neurons in the next hidden layer. The output function passes the neuron’s firing state to the 

next neuron as an input. It is important to note that the neuron outputs a singular firing state, but 

sends this output to multiple neurons in the next hidden layer. This process is depicted in Figure 

2, which modifies a chart from Kriesel’s (2009). 

However, it is important to note the final output (which is the unemployment rate in this 

study) is a continuous positive number. The neurons before the output have activation functions 

that output real numbers (such as ReLu), instead of being restricted between 0 and 1. This is known 

as MLP Regression, or multilayer perceptron regression.  

The above paragraphs describe the calculation behind neural networks. We now describe 

the process of obtaining weights and biases within the network by explaining the algorithm behind 

the MLP regression and the calculation of weights and biases within a neural network. An 

optimization procedure is used that minimizes the error between the predicted output values of the  

 

Figure 2: Numerical Processing in a Given Neuron 

(Note: each of the data outputs are the same, and then enter as inputs to 

the neurons in the next hidden layer.) 
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training data and the actual output values. This can be expressed mathematically as follows. Let 

there be p pairings of inputs and outputs. Let x(i) be a n-dimensional vector for the i-th input and 

d(i) be a singleton for the actual output of x(i). In addition, let w be the unknown weight matrix of  

the ANN and let b be the unknown bias network of the ANN. Thus, we would like to minimize 

the squared error of the predicted output as per the ANN and the actual output. The predicted 

output can be calculated per the methodology in the above paragraph. If y(x: w; b) denotes the 

predicted output of x conditional on w and b, the objective function is:  

𝑚𝑖𝑛 ∑‖𝑦(𝑥(𝑖): 𝑤; 𝑏) − 𝑑(𝑖)‖2 

𝑝

𝑖=1

                                                                                (5) 

The y function is dependent on the activation of the neurons in the ANN, the number of hidden  

layers, and the number of inputs. These determine how large the optimization problem is. However, 

the optimization function is convex, making it easily solvable on a computer. This process 

generates the weights and biases for the ANN based on the training data. We can then take the fit 

data, using the methodology described above, to calculate the predicted outputs. In this way, neural  

networks learn based on the training data and forecast based on the fit data (see Kriesel, 2009). 

 As a collective, neural networks are a highly non-linear black box that operates in a similar 

fashion to neural networks in the brain. Networks are comprised of neurons, which contain 

propagation, activation, and output functions for computation. The choice of activation function 

depends on the data and maximizes the performance on the out of sample data.  Neurons are 

connected through a matrix of weights and biases, which weight neurons’ outputs into inputs into 

neurons in the next hidden layer. To obtain the weights and biases, an optimization procedure 

minimizes the squared error of the predicted output versus the actual output on each of the vectors 

in the training data.  
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5. An Overview of Forecasting Algorithms 

 This section summarizes how forecasts are calculated for each model type. The models 

include an artificial neural network (ANN) and Lasso Regression using principal components, and 

a Lasso Regression on all the continuously available (cleaned) FRED set of variables. Each 

model’s forecast performance is assessed relative to each other because a long time series on 

survey forecasts of the mortgage delinquency rate are unavailable.3 

5.1 Neural Networks 

 The forecasting methodology for both machine learning models are depicted in Figure 3.   

The table at the top of the figure provides the data for the forecast. Each row represents a quarter 

of data, where the independent variables span from 1970:q1 to 2017:q2. In this figure, there are 

two types of variables: quarterly (Y) and monthly (X). While the table has only two variables, 

there are thousands more independent variables in the actual model. Only two are presented for 

ease of reading the figure. Quarterly data are placed in a row where the "Data Date" matches the 

reported date of the variable. For example, if Y=1 in 1970:q1, it will be placed in the first empty 

square. Monthly variables are slightly more complicated. Within a quarter there are three months. 

Therefore, each monthly independent variable will occupy 3 columns, each of which can be 

considered a separate variable. The first column represents the first month of the quarter, the 

second column the second month of the quarter, and so on. For instance, suppose the monthly 

variable X has 1970:q1 data 5,6,7.  Each of these numbers is placed consecutively in the 

appropriate month. This then produces Table 3 for the independent variables for 1970:q1. Using 

this methodology, the entire table can be filled for all the quarters and independent variables. The 

                                                 
3 In contrast, Kreiner and Duca’s (forthcoming) study is able to compare ANN and Lasso forecasts of the 

unemployment rate with the mean forecast from the Survey of Professional Forecasters (SPF).  Their ANN model 

outperformed the Lasso models and also the SPF forecasts—but by a larger degree than the Lasso models. 
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final column is the dependent variable. This column is a one-year ahead forecast of the independent 

variables because this paper forecasts the unemployment rate one year ahead.  

 The first forecast uses data from 1970:q1 to 1999:q4 to forecast 2000:q4.  First, the 

independent variable data from this time period are put into a PCA algorithm with a variance 

threshold of 0.99. The algorithm is a preprocessing step for the actual forecasts. Then, one year's 

worth of lags is added for each column of independent variable data.  These are appended to the 

dataset as separate columns for each variable. The forecast takes the training data from 1970:q1 to 

2000:q3 and trains the model. The weights, biases, and other metrics (depending on the type of 

model) from the 1970:q1-1999:q4 data are used to forecast the unemployment rate. The above 

process—illustrated in Figure 3 and including the PCA algorithm—is repeated for each forecast. 

For the non-rolling window variant, the beginning of training is fixed. In other words, the first pair 

of inputs and output will always be 1970:q1. In the rolling window variant, the beginning of 

training increases by one quarter for each forecast. This means that the second forecast has training 

start in 1970:q2 instead of 1970:q1. The rolling window, therefore, has a fixed number of rows of 

data for training. Both types of forecasts will roll in one quarter of new data as available. In 

particular, for the second forecast, 2000:q1 can now be added to the independent variables of the 

model.  

 For the neural network variant, we note that the weights, biases, thresholds, etc. change 

from forecast to forecast during the 2001-2018 forecasting period. However, there are parameters 

that are fixed. The number of hidden layers, number of neurons per hidden layer, activation 

function, and rolling versus non-rolling window remain constant across the forecasting period. 
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Figure 3: The Forecasting Algorithms for the Lasso and Neural Network Models 

 

Data Date Y 𝐗𝐦𝐨𝐧𝐭𝐡 𝟏 𝐗𝐦𝐨𝐧𝐭𝐡 𝟐 𝐗𝐦𝐨𝐧𝐭𝐡 𝟑 

Q1 1970 1 5 6 7 

 

Table 3: An Example of the Independent Variable Reporting for 1970:q1 
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However, each of these fixed hyper-parameters is varied to determine the optimal forecast 

configuration. In other words, the entire forecast is re-run making small changes in each of these 

parameters. This paper tests 1-150 neuron hidden layer size; one, two, and three hidden layers; 

four different activation functions; and rolling and non-rolling windows.  

5.2 Lasso Regression 

 The Lasso Regression uses the same overall structure as the neural network model. 

However, the only hyper-parameter tested is the choice of the shrinkage parameter: λ. λ is varied 

to generate a series of forecasts from 2001-2018 to determine the optimal forecast configuration.  

 

6. Results 

 The root mean squared error is used to assess forecast accuracy of the three models. The 

error is rounded to the nearest 0.01 as forecasts are often similarly rounded.  

6.1 Finding the Best Neural Network Model 

 This subsection details finding the best model for the entire dataset using neural networks. 

For the neural network model, the optimal neural network configuration is first found. One, two, 

and three hidden layers were tested—layers greater than three were not tested because they were 

too computationally excessive for the computer used. Within each hidden layer, the hidden layer 

size was varied between 1 and 150. Hidden layer sizes over 150 were not tested because the RMSE 

was at a minimum at about 120 neurons for each number of these hidden layer sizes. Figure 4 plots 

the RMSE for each off these network configurations. There are three series, one for each number  

of hidden layers. Within each series, the number of neurons per hidden layer is varied. Based on 

the chart, two and three hidden layers on average outperform one hidden layer. For the four-quarter 

ahead horizon, the best configuration, based on RMSE, occurs at a configuration with three hidden 

layers and 58 neurons per layer. The RMSE for this configuration is 0.24. For the two-quarter  
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Figure 4: Summary of Hidden Layer Performance. 

(Sources: FRED and the authors’ calculations.) 

 

horizon, the best fitting configuration had three hidden layers and 53 neurons per layer, and for the 

one-quarter ahead horizon, the best fitting configuration had three hidden layers and 51 neurons 

per layer, 

We next identify the best activation function for the neural network. We use the optimal 

configuration found above as a given for this test. While in theory it is best to test all neural network 

configurations and activations, it would be too time consuming to test all possibilities. Instead, the 

best choice for each test is passed onto the next test. The activations logistic, identity, logistic, tanh,  

and relu are tested. The results of this test are shown in Figure 5.  Logistic is the best activation 

function with respect to RMSE by a landslide.  

This finding is also consistent with the neural networks papers discussed earlier in the 

literature review. Given the above two characteristics, the final attribute tested is the rolling versus 

non-rolling window of the training or fit period. For the latter, the training starts in 1970:q1. In the  
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Figure 5: Summary of activation function performance. 
(Sources: FRED and authors’ calculations.) 

 

 

rolling variant, the beginning of training rolls ahead by one quarter for each projection.  The rolling 

and non-rolling results are reported in Figure 6. 

The fixed time window (or non-rolling) greatly outperforms the rolling time window 

variant. This result has economic significance. When predicting the future delinquency rate, 

omitting macroeconomic data from relatively old recessions and expansions has a large positive 

impact on the error. Rolling out the old data increases error because all past cycles have some 

effect on new cycles. In other words, including old mortgage and other data patterns helps capture 

the nature of credit quality cycles. The more cycles embedded within the model, the higher the  

probability the model can predict the mortgage delinquency rate in new cycles. This finding is 

consistent with machine learning models of the unemployment rate, for which Montgomery et. al.  
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(1998) and Kreiner and Duca (forthcoming) find that including lags increases their model’s 

forecast accuracy.  

 

 

 

Figure 6: Rolling vs. Non-Rolling model performance 

(Sources: FRED and authors’ calculations.) 

 

6.2 Finding the Best Lasso Regression Model 

 Using the findings of Subsection 6.1, we use the non-rolling training window as it had the 

best RMSE. The only test in this subsection is varying 𝜆  to find the appropriate shrinkage 

parameter that minimizes error. Results are shown in Figure 7. 𝜆 is varied from 0 until 𝜆=1.  𝜆 is 

not varied outside this range as 𝜆 is shown to monotonically increase for the Lasso model using 

PCA inputs, after λ equaled 0.38, 0.35, and 0.28 for the one-, two-, and four-quarter ahead horizons, 

respectively.  For the Lasso model drawing directly on data from FRED, after λ equaled 0.80, 0.90, 

and 1.05 for the one-, two-, and four-quarter ahead horizons, respectively. These 𝜆 yielded the 

lowest RMSE for their horizons and input datasets, which are reported later in Table 4.  These will 

represent the best of the Lasso Regression type models.   
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Figure 7: Lasso Shrinkage Parameter Test Results 

(Sources: FRED and authors’ calculations.) 

 

6.3 Full (2001-2018) Model Results 

We compare the RMSE’s from four-quarter, two-quarter, and one-quarter ahead forecasts 

of the mortgage delinquency rate from the ANN and two Lasso models that had the best 

configurations in sections 6.1 and 6.2.  Data through 2018:12 were retrieved on January 7, 2019, 

and the ANN and one of the Lasso use 58 principal components derived from those data. Figure 8 

plots each of the models' delinquency rate projections over time against the benchmark—which 

will be the Lasso regression on individual FRED variables. This serves as a benchmark to illustrate 

the potential advantages not only of pre-processing data with principal components before using a 

Lasso model, but also of using nonlinear ANN learning structures over the linear Lasso framework.  

Table 4 provides the RMSE for each model over the full forecast period and also stratified into 

three sub-periods: 2001-2006, 2007-2012, and 2013-2018. These sub-periods were chosen to 

document model performance over three consecutive 5-year time intervals. We note the data from 

FRED for the Lasso and neural network models has 10,646 variables and 1,905,870 observations, 
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with 185 principal components, respectively, for the one-, two-, and four-quarter ahead forecasts, 

respectively.  

As reflected in Figure 8 and Table 4, the ANN forecast notably outperforms both Lasso 

models over a four-quarter horizon, having an RMSE that is slightly more than 35 percent smaller 

than that of either Lasso model.  While the ANN has a similar, but notable advantage over the 

2001-2007 and 2013-2018 sub-sample forecast periods, its forecast accuracy is relatively stronger 

in the 2007-2012 period that brackets the Great Recession and the Global Financial Crisis. This 

pattern is sensible given that the ANN is better suited to track nonlinear behavior than the Lasso 

framework and given the highly nonlinear nature of mortgage defaults and of recessions.  In this 

respect, this pattern is consistent with the loan-level analysis of Sirignano et al. (2018), which also 

documents superior performance by ANN models. One other noteworthy pattern is that the Lasso 

using principal components tended to yield more accurate forecasts, implying that the pre-

processing step of deriving principal components is valuable in deriving information from 

underlying variables. 

When the forecast horizon is shortened to two- and then one-quarter ahead, the relative 

superiority of the ANN forecasts is less pronounced over that of the two Lasso models.  Indeed, 

compared to the Lasso model using principal components as inputs, the reduction in RMSE is only 

0.01 for each of these horizons.  That said, from a regulatory point of view, the strong superiority 

of the ANN approach at a four-quarter horizon is more relevant insofar as more advanced warning 

is more helpful for several important reasons.  First, regulators would have more time to demand 

lenders to build up capital buffers.  Second, lenders would have more time to build up capital and 

loan loss reserves ahead of loan quality problems. Finally, in advance of a deterioration in loan 
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Figure 8: Forecasts of the 30-90 Day Mortgage Delinquency Rate over 2001-2018.  

(Sources: FRED and authors’ calculations.) 

 

 

 4Q Ahead 1Q ahead 2Q ahead 

 

Source 

RMSE 

2001-18 

RMSE 

2001-06 

RMSE 

2007-12 

RMSE 

2013-18 

RMSE 

2001-18 

RMSE 

2001-18 

Neural Networks 0.24 0.14 0.36 0.17 0.09 0.15 

Lasso, PCA 0.38 0.21 0.56 0.28 0.10 0.16 

Lasso all variables  0.39 0.23 0.55 0.31 0.12 0.18 

 

Table 4: Forecast Errors By Time Period 

(Sources: FRED and authors’ calculations.) 

 

quality that could trigger a financial crisis or credit crunch, policymakers would have more  

advanced waring to set up liquidity and capital backstops, and to build consensus for and enact 

fiscal or monetary policy actions to stabilize the macro-economy if warranted.  

3

4

5

6

7

8

9

10

11

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Actual

Lasso Regression Benchmark (All Variables)

Lasso Regression (PCA)

ANN

Percent, SA



 27 

6.4 Categories of FRED that Most Contribute to Mortgage Delinquency Rate Forecasts 

 This subsection takes a deeper look and examines which types of variables have the biggest 

impact on unemployment rate forecasts. We use the neural network model for this as it has the 

best performance as shown earlier, and we treat the ANN based on principal components from all 

variables as the baseline. 

Table 5 reports which types of variables are most informative at a four-quarter horizon, 

showing how much the RMSE rose above that of the full baseline model when each category is 

excluded from the input data.  For convenience, Table 6 lists the three most important categories 

for each forecast time period.   The biggest loss over the full and 2007-12 samples occurs if Money, 

Banking, and Finance variables are excluded, consistent with either such variables picking up 

vulnerabilities from building indebtedness or the ability of some financial variables to more 

quickly reflect expectations of future events. Not surprisingly, given the impact of income and 

labor shocks in severe downturns, the “Production & Business Activity” and Population, 

Employment, & Labor categories, respectively, were the second and third most important during 

this period dominated by the Great Recession.  Interestingly, over the 2001-2006 sub-period the 

biggest loss in fit occurred when international data are excluded. It is unclear if this might reflect 

how globalization affected U.S. labor markets—and thereby mortgage quality—especially after 

China entered the WTO in the early 2000s (see Autor et al., 2016). It may also reflect how capital 

inflows to the U.S. may have helped fund the mortgage boom of that sub-period.   

Another interesting sub-period pattern is that the Money, Banking, and Finance was not 

among the most informative during the 2013-18 period of recovery.  This may reflect the adoption 

of financial reforms that may have curtailed a large upswing in mortgage lending or stabilized loan 

quality expectations, both of which could work to limit the relative marginal information provided 
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Category Taken Out of Model RMSE 

2001-18 

RMSE  

2001-06 

RMSE 

2007-12 

RMSE 

2013-18 

Academic Data N/A N/A N/A N/A 

International Data 0.03 0.06 0.02 0.05 

Money,Banking,Finance 0.05 0.01 0.08 0.02 

National Accounts 0.00 0.01 -0.05 0.08 

Population, Employment, Labor Markets 0.03 0.00 0.06 -0.02 

Prices 0.01 -0.01 0.00 0.05 

Production and Business Activity 0.03 0.01 0.06 -0.01 

Regional Data 0.00 0.01 0.00 0.01 

 

Table 5: Dropped Category Results with Respect to the Baseline SPF Forecast 
(Sources: FRED and authors’ calculations.  "+/- above baseline" column compares the best base 

neural network RMSE with that of the model with the omitted category. "+/- above 

baseline"=RMSE omitted category- RMSE base. The RMSE base has a value of 0.24 from before. 

This measures the increase in error of omitting a category with respect to the benchmark. In general, 

the higher the error, the larger the impact the omitted variable category has on mortgage 

delinquency projections.) 

 

 

 

 

Time 

Period 

Most Influential 

Category 

2nd Most Influential 

Category 

3rd Most Influential 

Category 

Overall Money,Banking,Finance International 
Production and Business 

Activity 

2001-06 International Money,Banking,Finance National Accounts 

2007-12 Money,Banking,Finance 
Production & Business 

Activity 

Population, Employment, 

and Labor 

2013-18 National Accounts International Data Prices 

 

 

Table 6: Summary of Categories Having the Largest Impact  

(Sources: FRED and authors’ calculations. These are with respect to the baseline calculation) 
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by this category.  During the recovery sub-period of 2013-2018, variables from the “National 

Accounts” category provided the most marginal information.  With financial activity relatively 

stabilized by new financial reforms, the pace of recovery in incomes as tracked by this category 

could plausibly rise in importance. Second and third in importance are the categories International 

followed by Prices, respectively.  This could reflect that swings in the growth of the global 

economy were pronounced in this period, and that the Federal Reserve especially emphasized that 

it would pay much attention to restoring inflation toward its 2 percent target.   

The non-PCA Lasso can assess which individual variables are most important. For four-

quarter ahead forecasts, the five most informative, in order, were: net interbank borrowing by U.S. 

depository institutions, net lending or borrowing by the household sector, net accounts receivable 

of domestic finance companies, the four-week average of initial claims for unemployment, and the 

gross accounts of domestic finance companies. The first may pick up shifts in expectations 

associated different phases of the crisis that induced swings in interbank lending, while the second 

reflects shifts in how much households could borrow.  The third and fifth categories likely reflect 

how the swings in the expansion and contraction of the shadow bank sector mirrored concerns 

about the health of the financial system, which markets ascribed to real estate loan losses.  In terms 

of double-trigger models of mortgage default (see Bhutta, Dokko, and Shan, 2017), these four 

categories could plausibly reflect either expectations of future mortgage quality or how much the 

financial sector allowed households to get into negative net housing equity or both.  The fourth 

ranked factor—smoothed initial claims for unemployment—plausibly foreshadows the impact of 

labor shocks on loan quality—the second part of the double trigger mechanism driving mortgage 

defaults. 
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7. Conclusion 

 This paper forecasts the mortgage delinquency rate four-quarters ahead using machine-

learning techniques applied to wide-ranging variables available from FRED. Models estimate 

relationships in-sample over 1970-2000 and then forecast the delinquency rate quarterly since 

2001. The training window is updated each quarter to include new data. Rolling and non-rolling 

forecasts are tested for the training window. We find that a non-rolling neural network model 

performs best and outperforms a Lasso regression approach, and that pre-processing data with 

principal components helps improve the performance of Lasso models.  

From experiments dropping broad categories of FRED, “Money, Banking, and Finance” 

data were the most important in forecasting the delinquency rate over the full forecast sample, 

especially over the 2007-2012 period that was dominated by the Great Recession.  Income related 

categories encompassing variables from the national GDP accounts and labor markets were also 

important.  From Lasso models, financial and unemployment variables were among the most 

important.  This pattern is loosely consistent with financial variables quickly picking up 

expectations of future real estate losses and, perhaps also with financial and labor market data 

reflecting the factors associated with the double-trigger mechanisms in models of mortgage default.  

These findings imply that if one were to create a forecast with significantly fewer variables, 

retaining variables from these categories would maximize prediction accuracy.  

Our forecasting method can be efficiently implemented.  To generate new forecasts, an 

SQL database can be used to update variables and produce new forecasts in minutes.  Among 

potential improvements that we plan to test additional network configurations and consider 

additional macroeconomic variables not included in FRED, such as measures of geopolitical risk 

and consumer confidence.  
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